124 research outputs found

    Automatic Workflow Monitoring in Industrial Environments

    No full text
    Robust automatic workflow monitoring using visual sensors in industrial environments is still an unsolved problem. This is mainly due to the difficulties of recording data in work settings and the environmental conditions (large occlusions, similar background/foreground) which do not allow object detection/tracking algorithms to perform robustly. Hence approaches analysing trajectories are limited in such environments. However, workflow monitoring is especially needed due to quality and safety requirements. In this paper we propose a robust approach for workflow classification in industrial environments. The proposed approach consists of a robust scene descriptor and an efficient time series analysis method. Experimental results on a challenging car manufacturing dataset showed that the proposed scene descriptor is able to detect both human and machinery related motion robustly and the used time series analysis method can classify tasks in a given workflow automatically

    Adaptive Multimodal Fusion For Facial Action Units Recognition

    Get PDF
    Multimodal facial action units (AU) recognition aims to build models that are capable of processing, correlating, and integrating information from multiple modalities (i.e., 2D images from a visual sensor, 3D geometry from 3D imaging, and thermal images from an infrared sensor). Although the multimodal data can provide rich information, there are two challenges that have to be addressed when learning from multimodal data: 1) the model must capture the complex cross-modal interactions in order to utilize the additional and mutual information effectively; 2) the model must be robust enough in the circumstance of unexpected data corruptions during testing, in case of a certain modality missing or being noisy. In this paper, we propose a novel Adaptive Multimodal Fusion method (AMF) for AU detection, which learns to select the most relevant feature representations from different modalities by a re-sampling procedure conditioned on a feature scoring module. The feature scoring module is designed to allow for evaluating the quality of features learned from multiple modalities. As a result, AMF is able to adaptively select more discriminative features, thus increasing the robustness to missing or corrupted modalities. In addition, to alleviate the over-fitting problem and make the model generalize better on the testing data, a cut-switch multimodal data augmentation method is designed, by which a random block is cut and switched across multiple modalities. We have conducted a thorough investigation on two public multimodal AU datasets, BP4D and BP4D+, and the results demonstrate the effectiveness of the proposed method. Ablation studies on various circumstances also show that our method remains robust to missing or noisy modalities during tests

    Learning to ignore : fair and task independent representations

    Get PDF
    Training fair machine learning models, aiming for their interpretability and solving the problem of domain shift has gained a lot of interest in the last years. There is a vast amount of work addressing these topics, mostly in separation. In this work we show that they can be seen as a common framework of learning invariant representations. The representations should allow to predict the target while at the same time being invariant to sensitive attributes which split the dataset into subgroups. Our approach is based on the simple observation that it is impossible for any learning algorithm to differentiate samples if they have the same feature representation. This is formulated as an additional loss (regularizer) enforcing a common feature representation across subgroups. We apply it to learn fair models and interpret the influence of the sensitive attribute. Furthermore it can be used for domain adaptation, transferring knowledge and learning effectively from very few examples. In all applications it is essential not only to learn to predict the target, but also to learn what to ignore

    SUBBLOCK OCCURRENCES IN SIGNED DIGIT REPRESENTATIONS

    Get PDF

    Mitigating discriminatory biases in success prediction models for venture capitals

    Get PDF
    The fairness of machine learning-based decision support systems has become a critical issue, also in the field of predicting the success of venture capital investment startups. Inappropriate allocation of venture capital, fueled by discriminatory biases, can lead to missed investment opportunities and poor investment decisions. Despite numerous studies that have addressed the prevalence of biases in venture capital allocation and decision support models, few have addressed the importance of incorporating fairness into the modeling process. In this study, we leverage invariant feature representation learning to develop a startup success prediction model using Crunchbase data, while satisfying group fairness. Our results show that discriminatory bias can be significantly reduced with minimal impact on model performance. Additionally, we demonstrate the versatility of our approach by mitigating multiple biases simultaneously. This work highlights the significance of addressing fairness in decisionsupport models to ensure equitable outcomes in venture capital investments

    MatchPoint:Spontaneous Spatial Coupling of Body Movement for Touchless Pointing

    Get PDF
    Pointing is a fundamental interaction technique where user movement is translated to spatial input on a display. Conventionally, this is based on a rigid configuration of a display coupled with a pointing device that determines the types of movement that can be sensed, and the specific ways users can affect pointer input. Spontaneous spatial coupling is a novel input technique that instead allows any body movement, or movement of tangible objects, to be appropriated for touchless pointing on an ad hoc basis. Pointer acquisition is facilitated by the display presenting graphical objects in motion, to which users can synchronise to define a temporary spatial coupling with the body part or tangible object they used in the process. The technique can be deployed using minimal hardware, as demonstrated by MatchPoint, a generic computer vision-based implementation of the technique that requires only a webcam. We explore the design space of spontaneous spatial coupling, demonstrate the versatility of the technique with application examples, and evaluate MatchPoint performance using a multi-directional pointing task

    Efficient 3D object detection using multiple pose-specific classifiers

    Get PDF
    We propose an efficient method for object localization and 3D pose estimation. A two-step approach is used. In the first step, a pose estimator is evaluated in the input images in order to estimate potential object locations and poses. These candidates are then validated, in the second step, by the corresponding pose-specific classifier. The result is a detection approach that avoids the inherent and expensive cost of testing the complete set of specific classifiers over the entire image. A further speedup is achieved by feature sharing. Features are computed only once and are then used for evaluating the pose estimator and all specific classifiers. The proposed method has been validated on two public datasets for the problem of detecting of cars under several views. The results show that the proposed approach yields high detection rates while keeping efficiency.Postprint (published version

    Mellin transforms and asymptotics : digital sums

    Get PDF
    Résumé disponible dans le fichier PD
    • …
    corecore